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Abstract— We present a fixed time-step algorithm for the
simulation of multi-rigid-body dynamics with joints, contact, col-
lision and friction. The method solves a linear complementarity
problem (LCP) at each step. We show that the algorithm can be
obtained as the stiff limit of fixed time step schemes applied
to regularized contact models. We do not perform collision
detection. Instead, a noninterpenetration constraint is replaced
by its linearization, which, together with a judicious choice of the
active constraints guarantees geometrical constraint stabilization
without the need to perform a reduction of the time step to
detect new collision or stick-slip transition events. Partially elastic
collisions are accommodated by a suitable modification of the free
term of the LCP.

The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory
(”Argonne”) under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

Preprint ANL/MCS-P1034-0303

I. INTRODUCTION

Simulating the dynamics of a system with several rigid bod-
ies and with joint, contact (noninterpenetration), and friction
constraints is an important part of virtual reality and robotics
simulations.

If the simulation has only joint constraints, then the problem
is a differential algebraic equation (DAE) [11], [6], which is
a widely studied and used computational paradigm. However,
the nonsmooth nature of the noninterpenetration and friction
constraints requires the use of specialized techniques. By and
large there are two ways to approach this nonsmoothness: reg-
ularization approaches and hard constraint (complementarity)
approaches.

The regularization approach [9], [20], [15] consists of
smoothing the nonsmoothness in the description of nonin-
terpenetration and frictional constraints and creating a DAE
for which there exist substantial analytical and software tools,
which is an important advantage. Sometimes the smoothing is
based on some physical interpretation as is the case when using
a nonlinear spring and damper model as a replacement for the
noninterpetration constraint [15]. The immediate disadvantage
of the regularization approach is that the resulting DAE can
be quite stiff.

The complementarity approach has been used in either an
acceleration-force setup [10], [7], [13], or a velocity-impulse
time-stepping approach [22], [21], [4], [5]. The latter has the
advantage that it always produces a solution that satisfies
the constraint simulations and avoids the Coulomb friction
model inconsistencies that are apparent in the acceleration-
force approach. It is worth mentioning that, when the value
of the time step is set to 0, the LCP of the velocity-impulse
approach is the same as the one used in the compression
phase of multiple collision resolution [14]. The advantage of
the complementarity approach is that there are no additional
parameters to tune and there are no model stability issues.
This gain comes at the cost of a more difficult subproblem to
solve, that is, a potentially nonconvex LCP.

All of the hard constraint approaches mentioned above are
based on collision detection. A decision, based on geometrical
computations, is made of what are the pairs of bodies in
contact and which features are active at the current time. Then
the LCP is set up to compute the new acceleration or the
new velocity, and these are used to compute the future value
of the position for the intended time step. If a new collision
occurs within the time step, the simulation is backtracked to
the first collision and the simulation is restarted after applying
a collision resolution technique [14], [4].

Although this approach leads to a stable simulation, the
amount of computation needed per unit of target time step is
impossible to predict, due to the fact that there is no conceptual
upper bound on the number of collisions that can occur per
unit of time. One extreme example is the one of a rigid ball
bouncing on a flat, rigid, surface with a restitution coefficient
strictly between 0 and 1, which sustains an infinite number of
collisions in a finite amount of time. Of course, this situation
can be accommodated by turning the restitution coefficient
to 0 if the normal velocity is bellow a certain threshold, but
our example serves to show that there is no upper bound
on the number of collisions, and, therefore, on the number
of backtracking steps. In the hard constraint approach the
matters are made worse by the fact that the LCP subproblems
are expensive compared to one step of an explicit method
applied to a regularization formulation. The fact that bounc-
ing substantially worsens the performance of hard constraint
approaches has been noted before in comparison with impulse-



based simulation [18].
It should also be noted that regularization approaches are

not immune to increased computation in the case of locally
high density of events, even though the effect is not explicit. In
this case, proximity of an event such as collision is manifested
by a sudden increase in the penalty term that leads to terminal
instability unless the time-step is reduced dramatically or the
system is treated implicitly. In the latter case, reduction of
the time-step may also occur since the existence of a solution
to the nonlinear equation defining the integration method is
guaranteed only for sufficiently small time-steps [16].

The fact that the amount of computation per unit of time-
step may be locally impredictible creates an important obstacle
for applications that are intended to run, eventually, in an
interactive fashion. It is therefore useful to investigate whether
it is possible to define an approach where, once the time-
step is fixed, the amount of computation necessary to advance
the simulation for that one time-step is upper bounded, while
maintaining the stability of the system.

A stable fixed time step approach can be realized in two
ways, based on the approaches presented above. One can
either integrate the equations that result from the penalty
method implicitly, or one can use a time-stepping approach.
We will show that, in this context, the two approaches lead
to essentially the same subproblems to be solved at every
step, and we will therefore concentrate on the complementarity
approach. We show how partially elastic collisions as well as
contact, friction and joint constraints can be accommodated by
this approach. We have found that, for this method, constraint
stabilization can be achieved at no additional cost, similarly
as in [2].

In the following we will restrict ourselves to first-order
integration methods. This is justifiable since, if we do not
plan to perform collision detection, the method cannot exceed
order 1 anyway [16].

II. EXTREMAL ANALYSIS OF A PENALTY MODEL

Consider a multi-rigid-body system whose state is quantified
by the position vector q and the velocity vector v. The external
and inertial forces are denoted by k(t, q, v). We assume that
the system has a constant, positive-definite mass matrix M .
This assumption is not essential, but it simplifies our notation.
Such a mass matrix can be obtained in the Newton Euler body
coordinates.

A noninterpenetration constraints is represented by means
of the signed distance between two bodies functions, Φ(q)
[12]. The noninterpenetration constraint becomes Φ(q) ≥ 0.
The mapping Φ(q) is generally not differentiable everywhere
even for simple shapes [2]. For smooth and strictly convex
bodies, the mapping Φ(q) is differentiable in a neighborhood
of the feasible set {q|Φ(q) ≥ 0}. To simplify the discussions
we assume that Φ(q) is differentiable at every point where it
is evaluated and we defer to future work the case when Φ(q)
is nonsmooth that appears for both nonconvex smooth-shaped
and nonsmooth-shaped bodies.

We consider that the system is subject to m noninterpen-
etration constraints. The feasible set for the entire system is
represented by

Φ(j)(q) ≥ 0, j = 1, 2, . . . ,m. (2.1)

To enforce these constraints we use a penalty method
[15] which allows the noninterpenetration constraints to be
violated but creates a reaction force that prevents more severe
interpenetration. For one noninterpenetration constraint j, the
modulus of the reaction force is

θ(j)(q) = γ(j)
(
Φ

(j)
−

(q)
)b

, (2.2)

where b > 1 is some appropriate exponent and γ(j) > 0 is
the penalty parameter. Here the quantity Φ

(j)
−

(q) represents the
negative part, that is, the constraint violation, of Φ(j)(q). Its
algebraic expression is

Φ
(j)
−

(q) =
−Φ(j)(q) + |Φ(j)(q)|

2
.

We can add to (2.2) a damping term whose effect is to
produce dissipation when a collision occurs. For the present
development we restrict our model to the elastic-type force
from (2.2). By using Hertzian contact theory, it is determined
that, in 3 dimensions, the appropriate exponent is b = 3

2 [15].
Note that, when b > 1, we have that the function θ(j)(q) is
continuously differentiable.

For the total reaction force from the noninterpenetration
constraints to be of the potential type, its direction must be
∇q(Φ

(j))(q). With these choices and the use of Newton’s law,
the dynamics of the system becomes.

dq

dt
= v.

M dv
dt

= k(t, q, v) +
∑m

j=1 θ
(j)(q)∇qΦ

(j)(q).
(2.3)

We now look for numerical schemes for the system (2.3).
The concern is that the stiffness that appears through the force
modulus θ(j)(q) could lead to numerical instability. To alle-
viate this concern, we consider two stiffness accommodating
approaches: (1) θ(j)(q) is treated implicitly and (2) θ(j)(q) is
treated linearly implicitly. In the following, we consider hl,
t(l), q(l) and v(l) to be the current time step, time, position
and, respectively, velocity. We have that t(l+1)− t(l) = hl. For
generality of the setup we allow hl to vary but our method
works just as well for a fixed time step.

A. The implicit approach

We obtain the following time-stepping scheme

q(l+1) = q(l) + hlv
(l+1).

M v(l+1)
−v(l)

hl

= k(t(l), q(l), v(l))

+
∑m

j=1 θ
(j)(q(l+1))∇qΦ

(j)(q(l+1)).
(2.4)

Consider the optimization problem

minv ψ(v,Γ) = 1
2v

TMv − vT
(
Mvl + hlk(t

l, ql, vl)
)

+
∑m

j=1
1

b+1γ
(j)

(
Φ

(j)
−

(q(l) + hlv)
)b+1

(2.5)



where Γ =
(
γ(1), γ(2), . . . , γ(m)

)
.

Then it can immediately be seen that any local solution
v∗ of the optimization problem (2.5) is a solution v(l+1) of
(2.4). In effect, the discretized version of Newton’s law in (2.4)
are precisely the optimality conditions for the optimization
problem (2.5). This property is related to the one of variational
integrators [17].

We are interested in the situation where γ(j) is so large that
it results in stiffness that is much more severe than the intended
time step could acommodate. So we wish to determine what
happens if we let γ(j) → ∞, j = 1, 2, . . . ,m. We denote by vn

the solution (and, in case of multiplicity, the global solution) of
(2.5) when Γn = Γ =

(
γ(1), γ(2), . . . , γ(m)

)
= (n, n, . . . , n).

One solution must exist because the objective function is
bounded bellow due to the existence of the quadratic term
and to the nonnegativity of the penalty term.

We assume that the set defined by the constraints (2.1) is
feasible, that is, that there exists some q∗ such that Φ(j)(q∗) ≥

0, for j = 1, 2, . . . ,m. This implies that Φ
(j)
−

(q∗) = 0, for
j = 1, 2, . . . ,m. In this case it is immediate that, since vn is
the optimal solution of (2.5), that

1

2
vT

nMvn − vT
n

(
Mvl + hlk(t

l, ql, vl)
)

≤ ψ(vn,Γn) ≤ ψ

(
q∗ − ql

hl

,Γn

)

and therefore the sequence vn is upper bounded uniformly
with n since, due to the fact that q∗ is feasible, the last term
in the preceding sequence of inequalities does not depend on
Γn. Therefore vn admits a limit point v∗.

Another consequence is that the term
∑m

j=1
1

b+1n
(
Φ

(j)
−

(q(l) + hlvn)
)b+1

is upper bounded
uniformly with respect to n. Taking the limit we obtain that
Φ

(j)
−

(q(l) + hlv
∗) = 0, that is that the point q(l) + hv∗ is

feasible.

Finally, if the set of vectors {∇qΦ(j)} are linearly inde-
pendent, then from (2.3) it can be seen that θ(j)(ql + hvn) is
also uniformly bounded and we can assume, after eventually
restricting to a subsequence, that θ(j)(ql + hlvn) → c(j) ≥ 0
as n→ ∞.

Since we have that (a−)ba = −(a−)(b+1) for any real
number a, we obtain that

θ(j)
(
ql + hlvn)

)
Φ(j)

(
q(l) + hlvn

)

= −θ(j)
(
ql + hlvn)

)
Φ

(j)
−

(
q(l) + hlvn

)
.

From our preceding results, this implies that
c(j)Φ(j)

(
q(l) + hlv∗

)
= 0.

After we replace all these limit relations in (2.3) and
we associate v(l+1) to v∗, and c(j),(l+1) to c(j), we obtain
the following nonlinear complementarity based time-stepping

scheme:

q(l+1) = q(l) + hlv
(l+1).

M v(l+1)
−v(l)

hl

= k(t(l), q(l), v(l))

+
∑m

j=1 c
(j),(l+1)∇qΦ

(j)(q(l+1))

0 ≤ c(j),(l+1)

0 ≤ Φ(j)(q(l+1))
0 = c(j),(l+1)Φ(j)(q(l+1))

(2.6)

which is precisely the time-stepping scheme from [22], for the
frictionless case.

B. The linearly implicit approach

In this case, the stiffness in θ(j)(q(l+1)) is accommodated
by linearization. To obtain meaningful results it is useful to
write θ(j)(q) in the form θ(j)(q) = γ(j)ε(Φ(j)(q))

∣∣Φ(j)(q)
∣∣b,

where
ε(x) =

{
1 x ≤ 0
0 x > 0

We approximate θ(j)(q(l+1)) by linearizing Φ(j)(q(l+1)) at the
point q(l), and we use that q(l+1) = q(l) +hlv

(l+1), as well as
the approximation

Φ(j)(q(l+1)) ≈ Φ̂(j),(l)(v(l+1)) = Φ(j)(q(l))+hl∇qΦ
(j)(q(l))T v(l+1),

to obtain that

θ(j)(q(l+1)) ≈ θ̂(j)(v(l+1)) = γ(j)ε
(
Φ̂(j),(l)(v(l+1))

) ∣∣∣Φ̂(j),(l)(v(l+1))
∣∣∣
b

The numerical scheme becomes,

q(l+1) = q(l) + hlv
(l+1).

M v(l+1)
−v(l)

hl

= k(t(l), q(l), v(l))

+
∑m

j=1 θ̂
(j)(v(l+1))∇qΦ

(j)(q(l)).

(2.7)

Note that the gradient of Φ is evaluated at q(l), since its
linearization would result in an O(hl) term that disappears
in the limit.

If b > 1, we use that d
dt
|t|a = sgn(t)|t|a−1 which is true

whenever a > 1 to obtain that

∇vl+1
1

b+1ε
(
Φ̂(j),(l)(v(l+1))

) ∣∣∣Φ̂(j),(l)(v(l+1))
∣∣∣
b+1

= −ε
(
Φ̂(j),(l)(v(l+1))

) ∣∣∣Φ̂(j),(l)(v(l+1))
∣∣∣
b

We therefore get that v(l+1) is a solution of the following
optimization problem

minv ψ(v,Γ) = 1
2v

TMv − vT
(
(Mvl + hlk(t

l, ql, vl)
)

+
∑m

j=1
1

b+1γ
(j)ε

(
Φ̂(j),(l)(v))

) ∣∣∣Φ̂(j),(l)(v))
∣∣∣
b+1

(2.8)
By using the same techniques as in the fully implicit case,

we obtain the following LCP-based time-stepping scheme in
the stiff limit of γ(j) → ∞:

q(l+1) = q(l) + hlv
(l+1).

M v(l+1)
−v(l)

hl

= k(t(l), q(l), v(l))

+
∑m

j=1 c
(j),(l+1)∇qΦ

(j)(q(l+1))

0 ≤ c(j),(l+1)

0 ≤ Φ(j)(q(l)) + hl∇Φ(q(l))T v(l+1)

0 = c(j),(l+1)
(
Φ(j)(q(l)) + hl∇Φ(q(l))T v(l+1)

)
(2.9)



This is precisely the time-stepping scheme from [2] when
joint and frictional constraints are not present. It has been
shown that this scheme is not only stable if the ratio between
consecutive time-steps is bounded bellow (the velocity stays
bounded uniformly as the time-step goes to 0), but also that
it achieves constraint stabilization without the need to solve
a problem where feasibility is enforced exactly at q(l+1) in
a nonlinear fashion. A similar constraint stabilization result
is achieved if we replace the constraint 0 ≤ Φ(j)(q(l)) +
hl∇Φ(q(l))T v(l+1) by 0 ≤ γΦ(j)(q(l)) + hl∇Φ(q(l))T v(l+1),
where γ is a parameter in (0, 1] [1].

C. Discussion

We have obtained that, in the very stiff limit of the penalty
method (when the parameters γ(j) approach ∞, by rapport to
the size of the time-step), we recover complementarity-based
time-stepping schemes.

It should be pointed out that, for many simulation schemes,
if the penalty parameter is appropriately chosen and the ve-
locities are not exceedingly large, then one can use an explicit
integration method that produces quite accurate results [15],
especially when there is only one contact. But if one desires
to create a general purpose simulation environment that is
computationally efficient, then a stable scheme is required for
a large variety of examples. It is difficult to find the appropriate
penalty parameter, especially in a multicontact regime, where
it is conceivable that the penalty parameters should be chosen
differently for each contact.

In the case that, in order to accommodate a wide range
of applications for a fixed target time-step, one goes to an
implicit approach of some kind, then choosing a large penalty
parameter in order to prevent interpenetration for a large
class of examples results essentially in an complementarity-
based time-stepping scheme, as shown in this section. For this
reason, in the rest of the paper we work with an LCP-based
approach.

III. ACCOMMODATING THE CAVEATS OF A FIXED

TIME-STEP MODEL

As it is to be expected, although a fixed time-step approach
has the obvious advantage of solving a predictable number of
subproblems per step, it also presents some unwanted side-
effects. In this section we describe them and discuss possible
ways to avoid them.

When describing some of the issues we will discuss about
collisions. Since we do not do collision detection, we should
specify what we consider a collision. We say that a collision
occurs if both Φ(q(l)) > 0 and Φ(q(l)) + hl∇φ

(j)T

v(l+1) > 0
but c(j),(l+1) > 0 (the multiplier for the normal force at the
next step).

A. A larger number of constraints

Either the nonlinear (2.6) or the linearized formulation (2.9)
have the problem that all constraints need to be considered. If
we do not intend to backtrack if a constraint is violated then
all constraints that could become active need to be included on

the list of constraints to be enforced. A simple and provably
correct strategy, at least in the limit of sufficiently small time
step is to define the active set as

A =
{
j|Φ(j)(q) ≤ ε

}

where ε > 0 is a fixed parameter. In our numerical exper-
iments, we used a parameter ε that was dependent on the
product between the norm of the velocity and the size of the
time-step and we did not encounter any difficulties.

B. All collisions that occur during one time-step are simulta-
neous

This effect is best observed if the mappings Φ(j)(q) are
linear. If Φ(j)(q(l+1)) > 0 but c(j),(l+1)

n > 0 then, from (2.9)
Φ(j)(q(l+1)) = 0, but Φ(j)(q(l) + t(q(l+1) − q(l))) > 0 for
any t < 1. So the distance can switch from positive to 0 only
at the end of one interval. In some sense, this is one feature
that makes the method work: by forcing all collisions occuring
during one time-step to be simultaneous, we avoid having to
treat them sequentially, which could require an uncontrollable
amount of computational effort.

If collisions are isolated in time (which is not the case with
the bouncing ball example at the beginning of this paper),
then, as the time-step goes to 0, they will eventually be
resolved individually so this is not so much of an issue. But
for many bodies, it is unlikely that the user is willing to take a
sufficiently small time step that will isolate the collisions, since
this may lead to a large amount of computation, especially if
each step involves solving an LCP.

It should also be mentioned that, in light of the extremal
analysis of the penalty model, this is unavoidable for any
method that attempts to simulate with a fixed time step. In our
(subjective) experience, in animation applications this effect is
invisible for time steps of 0.05 and bellow.

C. Dissipation of Energy

If we use the scheme (2.9) to simulate a ball falling on a
table, we can show (as we later show in an example) that the
ball will stick to the table, even though we started with a non-
dissipative penalty model to justify (2.9). Therefore (2.9) can
accommodate only plastic collisions. This is to be expected,
because backward Euler type schemes are dissipative. The use
a symplectic method like implicit midpoint on the penalty
approach followed by taking the parameters γ(j) to ∞ does
not completely remedy this problem. We will address this issue
by using an explicit energy restitution model.

D. The impact velocity depends non-trivially on the time-step

We will prove by an example this effect that is, by far,
the most subtle of a fixed time-step approach. We assume that
there is a ball that moves horizontally without friction, starting
at x = 0 with velocity 1 and it encounters a wall at x = 1.
We assume that there is no gravity so, in effect, this is one
dimensional motion. We assume that the collision response
mechanism is of the Newton type [14]: a portion e of the
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Fig. 1. Velocity after collision for the fixed time-step uncorrected method.

normal velocity is returned to the system. The exact velocity
solution to this problem is clearly

ẋ(t) =

{
1 t ∈ [0, 1]
−e t ∈ [1,∞)

.

We now assume that we apply the linearized time-stepping
scheme (2.9) with constant time step h. We have only one
noninterpenetration constraint: Φ(x) = 1 − x ≥ 0. Denote by
L = d 1

h
e−1, where by d·e we denote the ceiling function: the

smallest integer larger than or equal to the argument of the
function. We clearly have that the constraint is inactive and
that ẋl = 1 and xl = lh for l ≤ L. Since xL + h > 1, we
must have a collision at time L. From (2.9) we get that (since
a collision must occur)

ẋL+1 = 1 − c(1),L, 1 − xL − hẋL+1 = 0.

The solution to this problem is ẋL+1 = 1
h
− d 1

h
e + 1 ∈ (0, 1]

and c(1),(L) = − 1
h

+ d 1
h
e ∈ [0, 1). The velocity solution after

impact will be ẋ(l) = −e− e 1
h

+ ed 1
h
e for l ≥ L+ 2 instead

of its exact solution ẋ(l) = −e. As h → 0, the error lives
anywhere in the range [0, e), being able to be for example e

2
for arbitrarily small values of h! This effect is seen in Figure
1 for e = 1.

If the collision is inelastic (e=0), then the error after
collision is 0, but if the collision is partially elastic, then we
may introduce an O(1) error for arbitrarily small values of the
time step. Note that the situation does not improve if we use
a collision model based on the Poisson hypothesis [14], [4]:
that part of the compression impulse is restituted (even if, at
time L+1, we consider the collision instantaneous instead of
embedding it in a time-stepping scheme). Indeed, the Lagrange
multiplier c(1),(L), that enters an impulse restitution model
suffers from exactly the same effect.

IV. A VELOCITY RESTITUTION MODEL FOR FIXED

TIME-STEP SCHEMES

The simultaneous contact issue is unavoidable for fixed
time-step schemes. We will address the last two issues that
appear in a fixed time-step scheme by defining an appropriate
velocity restitution (Newton) model. Since we cannot use the
velocity at the time of the collision to compute the restituted

velocity, due to the lack of convergence effect, we will use
the normal velocity computed with the velocity vector at
the previous time (for our example, time L), before the
collision occurred. In doing so, we may incur an O(h) error
which is unavoidable anyway if we do not detect events such
as collisions with superior accuracy [16]. If the number of
collisions is finite, then these errors disappear in the limit. If
a collision occurs at contact (j), at time l−1, then we replace
the linearization of the contact constraint from (2.9) by

Φ(j)(q(l)) + hl∇Φ(j)(q(l))T v(l+1) + hlΛ
(j),(l) ≥ 0

where, after computing the modified normal velocity v(j),(l)
n =

∇Φ(j)T

(q(l))v(l−1), we define

Λ(j),(l) = e(j)
{
v
(j),(l)
n v

(j),(l)
n < −TOL

0 v
(j),(l)
n ≥ −TOL.

(4.10)

Here e(j) is the restitution coefficient at noninterpenetration
constraint (j). For ease of notation, if a collision does not
occur, we still use the parameter Λ(j),(l) though we will assign
it a 0 value. The parameter TOL is used as a truncation
parameter to remove exceedingly small bounces. If we apply
this approach to our one body example, we get that the velocity
following the collision is −e, the exact solution. In the general
case (where the velocity before and after the collision are not
constant), we get an error of O(h).

The Newton approach has the advantage that, if it is used
as a collision resolution technique (where Φ(j)(q(l)) and
hl are removed from the linearization), it is guaranteed to
not increase the kinetic energy when the scheme is slightly
modified to include the dissipation terms from v(l) [23]. We
cannot guarantee a good energy behavior for our scheme (like
that the energy will decrease in an isolated system) though we
never saw energy increases with this approach in our examples.

A. The time-stepping LCP

Including frictional and joint constraints, and using the
same notations as in [4], [3], [2] and, by and large, the
same notation as in [22], [21], we obtain that q(l+1) =
q(l) +hlv

(l+1) and that v(l+1) is the solution of the following
linear complementarity problem, where we use the notation
Q(l) = Mv(l) + hlk

(
t(l), q(l), v(l)

)




M −ν̃ −ñ −D̃ 0
ν̃T 0 0 0 0
ñT 0 0 0 0
D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0







v(l+1)

cν
cn
β̃
λ


+




−Q(l)

Υ
∆ + Λ

0
0


 =




0
0
ρ
σ̃
ζ




(4.11)[
cn
β̃
λ

]T [
ρ
σ̃
ζ

]
= 0,

[
cn
β̃
λ

]
≥ 0,

[
ρ
σ̃
ζ

]
≥ 0 .

(4.12)
Here ν̃ = [ν(1), ν(2), . . . , ν(m)] are the gradients of the joint
constraints, cν = [c

(1)
ν , c

(2)
ν , . . . , c

(m)
ν ]T are the multipliers

of the joint constraints, ñ = [n(j1), n(j1), . . . , n(js)] are
the gradients of the active noninterpenetration constraints,



cn = [c
(j1)
n , c

(j2)
n , . . . , c

(js)
n ]T are the multipliers (normal

impulses) corresponding to the interpenetration constraints,
β̃ = [β(j1)T , β(j2)T , . . . , β(js)T ]T is the aggregate of vectors
of tangential impulses, D̃ = [D(j1), D(j2), . . . , D(js)], the
tangent vectors corresponding to a discretization of the friction
cone, λ = [λ(j1), λ(j2), . . . , λ(js)]T are the multipliers of
the conical constraint, µ̃ = diag(µ(j1), µ(j2), . . . , µ(js))T is
a diagonal matrix whose diagonal is made of the Coulomb
friction coefficients Υ = 1

hl

(
Θ(1),Θ(2), . . . ,Θ(m)

)T
where

Θ(i) is the value of the joint constraint i at q(l), ∆ =
1
hl

(
Φ(j1),Φ(j2), . . . ,Φ(js)

)T
, Λ =

(
Λ(j1),Λ(j2), . . . ,Λ(js)

)T

is the vector of restitution factors from (4.10),

Ẽ =




E(j1) 0 0 · · · 0
0 E(j2) 0 · · · 0
...

...
...

...
...

0 0 0 · · · E(js)


 ,

where E(j) is a vector of ones of the same dimension as the
number of columns in D(j) and number of elements in β(j);
are the lumped LCP data. Note that the joint constraints are
also enforced by linearization. Here A = {j1, j2, . . . , js} are
the active contact constraints. The vector inequalities in (4.12)
are to be understood componentwise. We use the ˜ notation
to indicate that the quantity is obtained by properly adjoining
blocks that are relevant to the aggregate joint or contact
constraints. The problem is called mixed LCP because it
contains both equality and complementarity constraints.

We call our model fixed time-step, although hl is allowed to
vary, because the time-step does not need to be reduced to 0
in event of a collision and the collision resolution mechanism
is integrated in the time-stepping scheme. In effect, the time
step should not be reduced to 0 since it may lead to large
velocities due to the fact that ∆ and Υ contain an 1

hl

factor. If
all restitution coefficient are always 0 (Λ = 0), then the scheme
has been proven to be stable and to stabilize constraints.

V. NUMERICAL RESULTS

We have applied this approach to a two-dimensional system
whose initial configuration is a cannonball arrangement of 66
disks of radius 3 on a horizontal plank bounded by two slanted
walls. The friction coefficient is 0.15, the restitution coefficient
is 0.4, the time step is constant 0.05. The simulation was run
for 20 seconds, and four frames of the simulation are presented
in Figure 4.

From Figure 2 we see that the time it takes to solve the LCP
(4.11–4.12) is correlated with the number of active contacts.
This is to be expected, since the size of the LCP is proportional
to the number of active contacts. We also see that most of the
time it took less than 0.5 seconds to solve the LCP on a 1.7
Ghz Pentium IV running Windows 2000. The largest increase
in the number of contacts in one timestep was 7. This means
that an event-driven method may have taken seven times as
many LCPs to solve for the same time step which would have
substantially hurt the performance.
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Fig. 2. Number of active contacts and LCP computing time per timestep.
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Fig. 3. Depth of interpenetration (constraint violation) and total energy.

From Figure 3 we see that neither the constraint violation
nor the total energy increase uncontrollably. In effect, the total
energy decreases steadily, as should happen in the continuous
time limit. In addition we see that the schemes achieves con-
straint stabilization: constraint violations are rapidly corrected.
This effect is proved for 0 restitution coefficient in [2]. The
maximum constraint violation is about 8 centimeters, but it
should be kept in mind that the body radius is 3 meters.

For successful application of fixed time-steps methods there
are several issues that we plan to address in the near future.
The method should be extended to nonsmooth shapes which
are ubiquitous in applications. Also, a better strategy is needed
to predict the future active set which would result in even
smaller constraint violation.
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